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SUMMARY

In this article, we consider the application of three popular domain decomposition methods to

Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order

elliptic equations. The additive Schwarz method of Dryja and Widhmd, the vertex space method of

Smith, and the balancing method of Mandel applied to nonconforming elements are shown to

converge at a rate no worse than their applications to the standard conforming piecewise linear

Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the

existing theory for the conforming elements with only modest modification by constructing an

isomorphism between the nonconforming finite element space and a space of continuous piecewise

linear functions.

INTRODUCTION

We consider the convergence properties of domain decomposition methods applied to

Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order

elliptic problems. An isomorphism between the nonconforming finite element space with the

natural norm induced by the elliptic problem and a conforming piecewise linear space with the

H]-seminorm is constructed. Using the isomorphism, we are able to apply the existing analysis of

domain decomposition methods for conforming elements to nonconforming elements with only

modest modifications. As examples of this technique, we show that the operators arising in three

popular domain decomposition methods, specifically, the additive Schwarz method of Dryja and

Widlund [1], the vertex space method of Smith [2], and balancing method of Mandel [3], applied to

nonconforming finite elements have condition numbers that satisfy the same bounds as the ones

given in [4] and [5] for conforming finite elements.

The same technique was used in [6] and [7] to analyze the rate of convergence of balancing

domain decomposition and the standard additive Schwarz method for the dual-variable mixed finite

element formulation. Moreover, as a corollary of the analysis of Smith's method for the

nonconforming spaces presented in this paper, we have a new bound for Smith's method applied to

mixed finite elements.

*This work was supported in part by the Nat, ioual Science Foundation under Grant No. DMS-9112847.

pllltC,_t)iNG PAGE BLAIiK NOT FILMED PAGE- . INTENTIONALLYBLANK

93



After the research for this paper was completed, the author was made aware of some related

work done concurrently by Sarkis [8]. In particular, the isomorphism used herein was independently

suggested by Sarkis for linear nonconforming elements. In [8], Sa,rkis constructs and analyzes

special coarse spaces such that when the overlapping additive Schwarz method is applied, the

condition number of the resulting operator is bounded by a constant times (1 + log(H/h))(1 + H/_)

in both two and three dimensions. Here H and h are the characteristic sizes of the subdomains and

mesh, respectively, and t_ is a measure of the overlap of subdomains. The notable characteristic of

Sarkis' bound is that the constant is independent of jumps in the coefficients across subdomain

boundaries. If the techniques of this paper were used to derive bounds that were independent of

the jumps in coefficients, the resulting bound would include one log factor in two dimensions using

[1, 9], but two logs in three dimensions using [5, 10, 11].

The remainder of this paper is divided into six sections. In the next section, we set some

notation, formulate the nonconforming problem, and construct an equivalent representation in

terms of the nodal values. In Section 3, we construct an isomorphism between the nonconforming

space and a continuous space of piecewise linear functions. The isomorphism is used in Section 4 to

analyze the rate of convergence of the Dryja-Widlund additive Schwarz method. In tile last three

sections, we consider the substructuring methods ot' Smith and Mandel applied to the

nonconforming problem.

PRELIMINARIES

We consider the following self-adjoint, uniformly elliptic problem for p on the polygonal domain

ft C IR '_, n = 2,3, with boundary 0f_:

-V.AVp=f in f_, p=0 on Oft, (1)

where A is a uniformly'positive definite, bounded, symmetric second order tensor, and f C L2(f_).

The uniform ellipticity of (1) implies the existence of positive constants c,, c* such that the

following bound holds:

c._r_ <_ _rA(z)_ < c'_r( V,_c IR_, V:r • f_. (2)

In order to set a length scale, we assume that the diameter of f_ is one. We introduce a two level

quasi-regular triangulation of f_: a division first into suMomains {f_}v==_ with diameter O(H), and

a refinement of the first into elements with diameter O(h). Following [12], define the scaled Sobolev

norms

i1 11= = 1 1
"lil/_,ar2, = + -fftl,,lto,o ,,

where

Ilullo, ,= 1'.(*)1=&,

l h,a, I v,,(x)l ,1:,:,
|

i1..11o ,o ,,=

lt-,i n
dt ds.

Let N'(f_) be a finite dimensional nonconforming finite element space of Lagrange-type defined

subordinate to the triangulation T that vanishes at all degrees of freedom on 0_. Since N'(_) is of

Lagrange-type, the elements in N'(Ft) may be expressed in terms of a nodal basis, and we may
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identify an element in N'(f_) with the values it. a.ttains at the nodal points. For convenience, we

assume that the subdomains and the elements are triangular in two dimensions or tetrahedral in

three dimensions. Extensions to other shape regular decompositions are straightforward.

We consider the problem of finding pj, E N'(f_) such that

d(ph,qh) = fn fqhdx Vqh E N'(f_),
(3)

where d is the generalized Dirichlet form:

d(ph,q,,) = d.(p,,, q,,), da,(pl,, q,,) = _ f AVp_, • Vql, dz.
rET, rCf_'

We now introduce several conventions used in this paper. In this paper, we shall only be

concerned with the solution of this finite dimensional problem, and will henceforth drop the "h"

subscript.

Having defined a parent finite element space of functions A'(ft) with a nodal basis and a set

f_' C f_, we will simply write X(fY) for the restriction of A'(Ft) to f_', i.e.

a'(n') = 1+ E .V(n)}.

By an abuse of notation, we consider an element q5E ,g(f_') also to be an element of X(fi) by

setting _bto zero at all nodes outside of fi'.

We will write Q1 _- Q2 if two quadratic forms _'_)_1 and Q2 with the same domain D are

equivalent, i.e. if there exists constants Cl, c2 > 0 such that

V EZ .

In what follows, C will be used to denote a generic constant that may not be the same from one

line to the next. This constant, as well as the constants involved in the equivalence of quadratic

forms, will always be independent ot' h and H, but can depend on the constants in (2), the shape

regularity of the subdomains, the degree of the nonconforming finite elements, and the regularity of

the triangulation.

To conclude this section, we prove a lemma that provides an equivalent quadratic form for d(., .)

in terms of the nodal degrees of freedom. The proof of this lemma was suggested by Joseph Pasciak

in the context of the mixed finite methods considered in [6, 7].

Lemma 1 Let fl' C_ n be the union of elem_nt_ 4"T. And l_'.t A(a,) = c@c)A(:r), where a is a

positive, piecewise constant fll.nctiou with val'ue o_, on. r E 7-. The:T, ]br every p E N'(f_'),

dn,(p,p) '-'/" (t,(,,.i)-p(,z,)) 2. (4)
r E T, n,_des :

r C _' r_i,n I C r

The constants that appear in the dqfinition of the equivaler.tce do not depend on the constants in (2),

but rather on constants that arise when A is replaced by A.

Proof The local kernel of d,(., .) in N'(r) is exactly the constant functions on r since for

p • A/'(r)

d,(p,q) = 0 Vq • N'(r), e==> Vp = 0.
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Primary Vertex

Secondary Vertex

Original Edge

New Edge

Figure 1: Refinement of the 2D P-I element and a partial refinement of the 3D P-1 element.

Hence, (d,(., .))1/2 is a norm on N'(r)/IR. Since all norms are equivalent on finite dimensional

spaces, we see that

d,(p,p) "-' o,rlrl '-_/_ _2 (_'('_')- V(nJ)) _'
n_,rles :

rtl,rLj E 7"

by a simple scaling argument. The proof is completed by summing over the elements of 7- in f_'. rl

._ T _N qA CONPORMINC EQUI'vALEi CE

In this section, we construct a conforming space that is isomorphic to N'(ft) using the techniques

in [6, 7] and recall some basic properties about the isomorphism.
Given an element r C 7-, let _ be a subtriangulation of r such that the vertices of the

subtriangulation include the vertices of r and the nodal points in r pertaining to the degrees of

freedom of N'(r). Every element in the new triangulation should have at least one vertex that

corresponds to a nodal point of N'(r). Moreover, the subtriangulations should be constructed in

such a way that the union of subtriangulations gives rise to a refined quasi-regular triangulation of

Ft which we denote by

¢- U q-,.
rET

A vertex of 7" will be called primaw if it was a nodal point corresponding to a degree of freedom of

A/'(f_); otherwise, we call the vertex secondary. We say that two vertices of the triangulation 7- are

adjacent if there exists an edge of T connecting the vertices. An example of the subtriangulation of

the P-1 element that has nodal degrees of freedom at the center of its edges (faces) is given in

Figure 1.
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Let Uh(F/) denote the space of contiiluous piecewise linear functions subordinate to the

triangulation 7- that vanish on Off. For f_' C fl, a union of elements, define Uh(f_') by restriction, i.e.

u,,(fl') = {"l_,'I',, E U,,(_)).

Since the functions in Uh(fl') are naturally parameterized by the values they attain at the

vertices, we can define a pseudo-interpolation operator :_a' into Uh(fl') for any function ¢ defined at

the primary vertices contained in fl' by

O, if x E Off' fq Off;

2_'¢(x) =

_b(x), if z is a primary vertex not in Off' I'1Off;

The average of all adjacent primary vertices on the boundary

of f/', if z is a secondary vertex in Off' \ Off;

The average of a]l adjacent primary vertices, if z is a secondary

vertex in the interior of f_';

(5)

The continuous piecewise linear interpolant of the above vertex

values, if a: is not a vertex of q-.

Since :_rn' is well defined for any function defined a.t the primary vertices, by an abuse of notation,

we can understand :_n' both as a map from H(_') i.to Uh(_') and a map fl'om Uh(fl') into itself.
For any fl' that is the union of elements in T, let/_h(f/') C Uh(fl') denote the range of :_rn'; that is,

Uh(fl') = {'_b = _'q,q E N'(f/)}.

We now prove that 2ha': N'(fl') --+ g,.(fl') preserves the norm induced by the bilinear form da,(., .)

on X(ff) and the H_-seminorm on Uh(_'_ Since :;_' is a bijection between N'(fl') and U'h(_') by

construction, this proves that N'(fl') and Uh(f/') are isomorphic.

Theorem 2 Let ft' C [2 be the union of oh:merits. Then for all p E N'(fl'),

dn,(p, I') _-12_" plg,n,. (6)

Proof. This proof is an expanded version of the proof given in [7]. Recall that for _bE Ug(_'),

I¢l_,a,_- }2 I_1'-_/_ _ (¢(v,) - ¢(,j))=. (7)
r E T, vertices :

r C _' vi,vj Er

By virtue of Lemma 1 and Equation (7), it is enough to show that

E Irt'-=/_ _2 (v(_,) - ,,(,,.,))=_- _ I_1'-_/'' _ ((_'v)(,,) - (_a,p)(,j))=. (s)
r E 7-, nodes : r E 'T, vertices :

r C fll nl,r_ 3 E 7" r C _1 vi,v) E r

Since vertices of 7-, contain the nodal points of r and p = :_rn'p at these points, we have

E <-c E
nodes : gear vertices :

ni,n_ E r vi,vj _.'_
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wherethe constant is controlled by the regularity of tile subtriangulation. Hence,by summingover
the elementsof T in f_', we conclude that the right hand side of (8) dominates the left hand side.

To prove that the left hand side dominates the right, we note that the differences in the right

hand side are of three types: the difference at two primary vertices, the difference at two secondary

vertices, and the difference at a primary and a secondary vertex. Since p and 27n'p agree at primary

vertices of 3, the difference at two primary vertices occurs as a term in the left hand side. For two

secondary vertices Vl, v2 in an element _" E "]- containing a primary vertex vp, we see that

iv,/- _< +
Hence, it is enough to bound the difference at a secondary and primary vertex by terms in the left

hand side of (8).

Let v,_+x be a secondary vertex with adjacent primary vertices vl,..., v,,, and let pj = p(vj).

Noting that for j = 1,...,n

(2_'p) (vj) = pj, -- = -- pj,_'P T_j=l 'n,j=l

we see that

= n2 (PJ - P') < n2 j=l

by the Cauchy-Schwarz inequality. The proof is completed by summing over all triangles of 3. The

number of such terms, and hence the constant in the bound, is controlled since the regularity of the

mesh-lmplles that there is an a priori maximum number ot" adjacent elements that can share a

secondary point, gl

Using the techniques in the proof of Theorem 2, the following lemma is easy to prove.

Lemma 3 There exists a constant C depending only on the regularity of the triangulation T and

the degree of the nonconforming space such that .for any _' C f_, the "union of elements of 7",

I-__'¢1_,_, _<c1¢1_,,_,v¢ c u,,(ff), ]_= o, 1. (9)

THE DRYJA-WIDLUND ADDITIVE SCHWARZ METHOD

The presentation in this section and the next follows the treatment 0fSciiwarZ meth0dS given_y

Dryja and Widlnnd in [4]. :We concentrate only on the additive Schwarz methods with exact solves.

The convergence rate of the multiplicative Schwarz method may be estimated in terms of the same

quantities (see [13]) and is easily worked out. Extensions to inexact solves are likewise direct.

Recall that the additive Schwarz ' method with exact solves tot (3) is completely determined by a

decomposition of the finite element space N'(Ft) = No + N'I + ... + N_M. For each subspace .Aft,

define an operator Pi : N'(f_) _ .Mi by

d(Pip, q) = d(p,q) Vq CAfi. (10)

98

F_



The additive Schwarz algorithm with exact solves for (3) involves the solution of

M M

P'P= f, P=- _-_Pi, f _ _-_fi, (11)
i=O i=0

where fi C Hi is defined by

d(fi, q) = In fq dx Vq __N'i.

Abstract bounds on the condition number of P have been derived in terms of two quantities, Co

and the spectral radius of E, which we now define. Let Co be a constant such that for every p C A/"
Mthere exists a representation p = _i=0 [i with pi C Hi satisfying

M

d(p,,p,) <_ Cod(p,p). (12)
i=O

Let p(£) denote the spectral radius of ,Y'= {t_j}, the matrix of strengthened Cauchy-Schwarz

constants; that is, eij is the smallest constant for which

[d(p,,pj)l <_e_jd(p,,p,)½d(pj,pj)½ Mp,e 8, Mpj_ A/j, i,j >_ 1. (13)

The next theorem, due to Dryja and Widhmd [14], bounds the condition number of the additive

Schwarz method in terms of Co and p(g):

Theorem 4 The eigenvalues and the: co,,dilion n'umbc'r _(P) of P satis:ly

_,,,_.(P) > Co l, A,,,,_(P) s (p(g) + 1), ,c(P) < Co(p(g) + 1). (14)

To construct the decomposition of N'(f_) to be used in our application of the additive Schwarz

algorithm for nonconforming elements, we first create an overlapping decomposition of the domain

f_ by extending each subdomain Fti to a larger region f_'i which is also the union of elements of T.

We characterize the extent of the overlap of the partition , M{f_i}/=a by _, where

= mh_ d_._t(an;\ On,On',\ On).
i=l,...,M

The decomposition {_"_}/M__ 1 gives rise to a natural decomposition of N'(f_) by letting Af/C Af(12)

denote the set of functions that vanish at all nodes in the closure of (f_ \ f_). In order to provide a

mechanism for global exchange of information between subdomains so as to enhance the rate of

convergence, we also use a low dimensional space defined by

H0= {z,e H(n)I _,= J_,_ e u.(n)},

where Z a; is nodal interpolation into Af(ft), and UH(f_) is the space of continuous fimctions that are

linear on each subdomain Fti. Note that the sul)spaces for the nonconforming space are exactly the

nodal interpolants of the standard decomposition of the conforming space _(f_), namely,

U,_(_) n H0_(n:).

In the following lemma we recall the crux of the proof due to Dryja and Widlund (Theorem 3 of

[4]) that the Schwarz method applied to the conforming Galerkin discretization has a condition

number that is O(1 + (H/(_)).
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Lemma 5 For every ¢ E Uh(£t), there ezists a decomposition ¢ = _M o ¢i with d'o E Utt(Q),
1 t

¢i E Uh(rt) n H](_ti), 1 < i < m and a constant C independent of h, H, and 5, such that

M_[,;b,[_, n <_ C i+ [¢l_,n. (151
i=0

We now show that the application of the Schwarz method to the nonconforming space converges

at the same rate.

Theorem 6 The condition number n(P) of the additive Schwarz operator P defined by (11) induced

by the decomposition N'(fl) = Afo + ... + N'M of the nonconforming finite element space satisfies

The constant C is independent of h, 5, and H.

Proof. The verification that the largest eigenvalue of P is bounded by a constant is standard.

Since d(p_,pj) =- 0 for p, E A/_, pj E .Mj with f_ N f_ = (t, P may be written as the sum of an a

priori bounded number of disjoint projections. Since projections have unit norm, a constant bound

on the largest eigenvalue of P is immediate. See, e.g., Lemma 3.1 of [2].

For p E N'(Ft), let (:_rnp)i denote the decomposition of :_rnpE Uh(f_) arising in Lemma 5, and set

Pi = Z2g((_flP)i). It is easy to check that p, E AF/ and p = EMoI,_. Using Theorem 2 and Lemma 3,

we see that for i = 0,..., M,

d(p,,p,) <_ <

Summing and applying Lemma 5 and Theorem 2, we conclude that

d(pi,pi) < C _ I(_p),l_,a < C 1 + I_pl,,a -< C 1 + d(p,p).
i=0 i=0

Hence, Co in (12) is bounded by C (1 + H/5). An application of Theorem 4 completes the proof.

SUBSTRUCTURING DOMAIN DECOMPOSITION

The remaining two methods considered in this paper are domain decomposition methods applied

to a reduced problem involving only the degrees of fieedom on the internal interfaces of subdomains

M 0fli \ 0fl. Following [4], we recall the construction of the reduced problem. Since N'(fl) isI _ = Ui= 1

of Lagrange-type, we may associate with functions p, q E A/'(f_) the vectors of values they attain at

the nodes. Let z and y denote the vectors of noda.1 values of p and q, respectively, and x (1), y(i) the

subvectors of degrees of freedom in _i. Let D (i) denote the local stiffness matrix arising from

da,(-,-), and let D denote the global stiffness matrix, i.e.

x(OTD(i)y (i) = da,(p,q), :vTDg = _ z(0TD(il.ff (/) = d(p,q).
i=1 ,...,M
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For each subdomain, we can partition the degrees of freedom x(;) into two sets, the ones related to

nodes on the boundary of _ti denoted x(_ ), and the ones corresponding to nodes in the interior of f_i

denoted x_ O. Such a partitioning induces a partitioning of D (0 given by

x(i)TD(i)y(i) = X(B) *"(I _IB

The interior unknowns of each subdomain may be eliminated in terms of the boundary unknowns.

The resulting matrix, 5', is the Schur complement with respect to the interface unknowns defined by

_(i)T¢(i)v(i) where S (i) rl(i) rl(i)Ti Fl(i) _-1 ll(i)• rsvs = ',,. = - "-'i. J "-'I,.
i=l,...,M

It will be convenient to work with the bilinear forms induced by 5' and S (0, and so we define

,,.(i)T_(i)_ (i)4v, q) = 4&,/B, =

For a function p E A/'(f}), we note that unlike conforming spaces, the restriction of p to the

interfaces, Pit, is not solely determined by the nodal values on r since Af(Ft) is nonconforming.

Hence, we are careful to understand Af(F) as a subset of Af(f_) parameterized by the nodal values

on r consisting of the discrete harmonic extension of the nodal values to the interior of the

subdomains. Specifically, if p C A/'(F) has the vector of nodal values x(_ ) on 0f_, then PIn, is the

function associated with the vector of nodal values (z_O,z(_)) T where x_ i) satisfies

D(i)..(i) r,(i), (i)
II'Cl = --IJlB'r'B •

A linear functional g is easily const,ucted such that finding p E N'(F) satisfying

s(p,q) = g(q) Vq E .Af(r) (16)

is essentially equivalent to (3).

We now construct a conforming space of functions that is isomorphic to .Af(F) with the norm

induced by the bilinear form s(-,-). Let Uj_(F) denote the restriction of Uh(_) to uMIOfl_. Since

functions in Uh(F) vanish on Of} (because fimctions in Uh(f_) do), functions in Uh(P) can be

parameterized in the natural nodal basis by the values they attain at the vertices of 7- in F.

Analogous to (5), for r' the union of edges (and faces in 3D) in the triangulation 7- and _b a

function defined at the primary vertices in F', define a pseudo-interpolant 2rr'_b C Uh(P') by

=

0, ifxcF'oOfl;

q_(x), if x is a primary vertex not in P' f'l Of};

The average of all adjacent primary vertices on P' if x is a

secondary vertex on P';

The coIltinuous piecewise linear interpolant of the above vertex

values, if z is not a vertex of T.

(17)
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Note that if F'= 0f_', then :ff'¢ = (_rn'¢)10a, for all ¢ in Y(f_') that agree with ¢ at the nodal

degrees of freedom of 0f_'.

Since :_v' is well defined for any function defined at primary vertices, by an abuse of notation, we

can understand :if' both as a map fi'om Af(P') into Uh(F') and a map from Uh(P') into Uh(F'). We

denote the range of :_' by

= c u,,(r')}.

The equivalences in the following lemma are a combination of the standard trace theorem and an

extension theorem for Uh(0f_). In particular, the proof of this lemma given in [6] shows that the

space Uh(f_,) is rich enough to inherit the Extension Theorem of Widlund [15] from Uh(f_i).

Lemma 7 For ¢)C ffJh(Offt,),

I1¢11,/ ~,Ofll -- inf II¢ll,,n,, _' inf I¢11,n,- (18)

¢loa, = ¢ ¢loa, = ¢

Additionally, there exists a constant C iudclmndent of mesh. parameters such that

A

The following theorem plays the role of Theorem 2 for the interface problem.
=:7 =

Theorem 8 For all p E Af(F),

si(t',l') -9a, 2 (20)

Proof. By a direct computation Mlowed by an application of Theorem 2 and Lemma 7 noting

that Uh(f_i) = :_'(N'(_],)), we see that

si(p,p) = inf da,(fi,/;) _ inf I_rn Pll,n, _ [_T Pll/2,ofl.
F•H(m) b-•_z(a,)

Plofh = Pi Plon, = P

0

SMITH'S VERTEX_=_PACE METtIOD

Smith's vertex space method [2] is a.n additive Schwarz method applied to the interface problem

(16). The decomposition of N'(F) is constructed slightly differently in two and three dimensions. In

both cases, we first partition I" into overlapping subsets based on its decomposition as the boundary

of subdomains. In two dimensions, for each vertex Vj of F, let r v_ denote the set of points on F

that are less than a distance a from Vj. For each edge E_ of I', let F f' denote the interior of the

edge El. In three dimensions, for each vertex Va, each edge Ei, and each face Fk of I', define Fsv' as

above, let F_k denote the interior of the face Fk, and let F_ _ denote the set of all points in strips of

width (5 on all faces which share the common edge Ei.

Understanding the set of faces to be empty in two dimensions, the decomposition of F into

subsets induces a decomposition of H(F) by considering

= E a,r(),
GeiH,E,,V,,Fk}
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where for G E {E,, Vj,Fk}, AF(F_) c AF(F) are those fimctions that vanish at all nodal points on 1"

that are outside of the set rf, and X(ry) c zr(r) are thosefunctions that are the nodal

interpolant of the restriction to F of continuous fimctions that are linear on each subdomain fli and

vanish on 0fl.

The following lemma is the crux of the analysis of Smith's method by Dryja and Widlund [4] for

conforming elements.

Lemma 9 For every q$ E Uh(F), there exists a decomposition

¢= E eG
G6(H,E.B,Fk}

with ¢H 6 UH(F), Ca 6 Uh(V])= uh(r) n Ho'(rf) ford • {E,,g.,Fk} such that

M M

, 2 2_ [¢all/2,on, <- C(1 + log(H/,_))_ l¢ll/2.on,.
Ge{H,E,,Vj,Fk} i=l i=1

(21)

The constant C is independent of the choice of ¢, aT_,d the mesh parameters h, H, and 5.

Let Pc : N'(F) --->AF(F) denote the additive Schwarz operator defined by (10) with the bilinear

form d(.,-) replaced by the interface form s(., .) and the decomposition of AP(fl) replaced by the

decomposition of AF(F) described above. We now prove that the condition number of AFt for the

nonconforming space has the same bound given in [4] for the similar operator for the conforming

finite element space.

Theorem 10 The condition number of the additive Schwarz operator Pr for Smith's decomposition

for the nonconforming finite element discretization satisfies

_(Pr) < c:((l + log(H/_)). (22)

The constant C is independent of the mesh parameters h, H, and 5.

Proof As in the proof of Theorem 6, Pr may be written as the sum of an a priori bounded

number of disjoint projections, and so the largest eigenvalue of Pr is bounded by a constant.

To bound the smallest eigenvalue, we also proceed as in tt:e proof of Theorem 6. For p • AF(I'),

set pa = zrar((;Z'rp)a), G • {H, Ei, Vj,Fk}, where Z_ is interpolation at the nodes on F into AF(I')

and (;Irp)a is the decomposition of _rrp • Uh(F) that arises in Lemma 9. Since _rfp and p agree at

the nodal degrees of freedom of AF(P), and

N(ry) = z((u.(r)), _'(r[ _)= z_'_(uh(rf)) vc • {E,,vj,r_},

it is easy to check that

p = _ pa.
Ge {H,E, ,Vj ,Fk }

Working one subdomain at a time and using Theorem S and Lemma 3, we see that for G = H and

for G • {E,, Vj, Fk} such that F_a A Of_, 7_ 0 we have

s,(pa,pc;) _<elm pc,l,/_,,)n,= Cl_"n'((2rp)G)l_12,oa,<-Cl(]rp). _ll/_,0a,- (23)
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Assume that we can prove that there exists a constant independent of h, H and 5 such that

M M

E IFvl,/=,0., < c _ -_"' = H(r). (24)2 lZ P]1/2,0_i Vp E

i:1 i=l

Then by summing (23) over subdomains and subspaces, noting that s,(pa, pa) = 0 if rg n 0a, = 0,
and applying Lemma 9, Equation (24), and Theorem 8, we see that

M M
2

s(pG,pG) = y_. Y] s,(pc_,pa) <_C (l + log (H/a))=y_llrplll=,Oa,
Ge{ H,EI,V_,Fk ) Ge { H,E,,Vj,Fk } i=l i=l

M

<_ C(l +log(H/_))_ ._ ]_,/_,o., _<C(I +log(H/_))_s(p,p).
i=i

The proof of the condition number bound now follows from an application of Theorem 4, and we

are only left to Verify (24_:, i -= ' ...... :

Define a pseudo-interpolant :_q\r : X(fl) ---+Uh(fl) by (5), noting that the boundary of fl \ F is

0fl U F. Using the techniques in the proof of Theorem 2, it is easy to show that there exists a

constant C1 depending only on the regularity of the mesh and the degree of the nonconforming

space such that
M M

ID t,l,,_,ID vh,_, _<c, _ Vp .v(a).
i=l i=l

By Lemma 7, for each p E Af(F) there exists an extension I ,E e A/'(_/) that agrees with p at the

nodal points on F such that

, E 2 _)91, 2 - -
I_qp I_,n, <- C-7' Pl,/_z,aa, i = 1,...,m.

Combining these results after another application of Lemma 7 with ¢ iffp, we conclude that

M M hi

_ 1_ I, I,,n, clz ° Vll/_,aa,,l-_a P ]l,a,-<C_ _<
i=1 i=1 /=1

which verifies (24). I-I

In [6], the interface form arising fiom the discretization by mixed finite elements of (1) was
shown to satisfy Theorem 8 with A/'(I-') replaced by the appropriate space Of interelement

multipliers. Hence, the proof given above is applicable to discretization by mixed finite elements,

and we arrive at the following corollary.

Corollary 11 The application of Smith's decomposition method to the dual-variable mixed finite

element formulation discussed in [hi results in art operator whose condition number grows at worst

like 0((1 + log(H/5))2).

BALANCING DOMAIN DECOMPOSITION

As the final domain decomposition method considered in this paper, we investigate the balancing g

domain decomposition method of Mandel [3] applied to nonconforming finite elements. The method _
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involvesthe iterative solution (usually by conjugategradients)of (16) preconditionedby the
balancingpreconditioner describedin Algorithm 1 below. Each iteration involvesthe solution of a
local problemwith Dirichlet data, a local problemwith Neumanndata, and a "coarse-grid"
problem to propagateinformation globally and to insurethe consistencyof the Neumannproblem.
The theory and practical performanceof balancingdomaindecompositionfor the standard
conforming Galerkin finite elementmethod and mixed finite elementmethod are the subjectsof [5]
and [6], respectively.As in previoussections,wewill deducethe convergencetheory for the
nonconformingspacesfrom the conforming theory in [5] using the isomorphismintroduced in the
fifth sectionof this paper.

Oneremarkableproperty of balancingdomain decompositionis that the bound on the condition
number of the preconditionedoperator is independentof jumps in coefficientsacrosssubdomains.
Specifically,let the tensor A in (1) be written as A(x) = a(x),3,(x), where a is a positive function

that is piecewise constant with constant value ai on fli. The uniform ellipticity then implies that

there exists positive constants _., _ such that

---. T (25)

The bound on the condition number of the operator that arises in balancing domain decomposition

will depend on _. and _ but will be independent of c_i and c. and c" in (2).

Following Mandel's original exposition in [3], we now recall tile balancing preconditioner in terms

of matrices. A equivalent variational presentation is given in [6]. By an abuse of notation, we use

the same symbol to denote an element ill N'(F) and its associated vector of values attained at the

nodal degrees of freedom.

The balancing preconditioner is parameterized by two sets of matrices, a set of weighting

matrices { MWi}i=l and a set of kernel generators {Z_}_M__x.The weighting matrices

W_: Af(0a_) ---*N'(0a_) are chosen such that they form a decomposition of unity on N'(F), i.e.

M

N,W,NYp = r, c H(r),
i=,

where N, denotes the canonical inclusion mapping N_ : N'(Of_) ---*N'(F) by extending elements of

N'(0fli) by zero at all other degrees of freedom. A prescription for the weighting matrices that

guarantees a convergence bound independent of coefficient, jumps between subdomains is given in

Lemma 12 below. For each subdomain f_, let n_ = dim(N'(0_,)), and select an n_ x rn, matrix Z, of

full column rank with 0 <_ mi _ hi, such that

KerSi C RangeZi, i = 1,...,M. (26)

For the scalar, second order, elliptic problems we consider in this paper, KerSi is empty if there is

Dirichlet data imposed on any part of 0f_i C/0f_, otherwise it. is the set of functions that have the

same value at all the nodes on Ofli. From the kernel generators, we construct a "coarse space",

N'H C N'(F), defined by

M

N'H = {p C A/(F) • p = _ NiWiz, z E RangeZi}.
i=1

We say that q C N'(F) is balanced if it is orthogonal to Aft_; that is,

zTw?NSq=0, i = l,.., M (27)
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The process of replacing r by a balanced q = r - Sw, w E NH, will be called balancing and involves

solving a "coarse grid problem" over the space ._4 described in (28) and (29) below.

The action of the balancing preconditioner Mb,,l is defined by the following algorithm.

Algorithm 1 Given r E Af(r), compute M_r as follou,s. Balance the original residual by solving

the auxiliary problem for unknown vectors Aj C IR mJ,

M

Z,_W,_N,_(r- S E Nj%Z;_j) : O,
j=l

and set
M

q = r - S _ NjI4/'jZj),S,
j=l

Find any solution ui C Af(O_i) for each of the local problems

i = i,..., M (28)

qi = W_T NiTq, i= 1,...,M. (29)

Siui = qi, i = 1,...,M, (30)

balance the residual by solving the auxiliary problem ,for tzj E IRYb,

M

UW?X,_(r - s'E _H_('aj + zjt,j)) = 0,
j=l

i: I,...,M, (31)

and set
M

M(_.r. = _ N,W,('ui + Zit,,). (32)
i=1

. . ::

if some mj = 0, then Zj as well as the block unknowns ttj and ._j are void and the j-th block

equation is taken out of (28) and (31).

In [3], it was proven that Algorithm 1 implements a well defined operator that is symmetric and

positive definite. An abstract bound on the condition number of Mt_,]S was also given. We will use

the=(o-llowing-lemma proven-]n-_5] to determine a bound on the Con(iltion number of the

preconditioned system for the application to tlie nonconforming discretization.

Lemma 12 For subdomain f_i, define the weighting map Wi as multiplication of the nodal values

such that for any pi E .Af(O_i) and each nodal point u E Ofli,

a, pi(u). (33)

{j:n, ean_ }

Assume that there exists a number R so th,t

--sj , ) <_-- R s_(p,,pJ
aj (_i

(34)

for all i, j = 1,... ,M and all pi C Af(Of_i) that are orthogonal to the range of Zi. Then there exists

a constant C not dependent on h, H or R, so that the condition number a(Mb_S ) of the

preconditioned system satisfies

_:(M,TI,9)< c R.
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Sincemost nonconformingmethods, like tile mixed finite elementsconsideredin [6], do not have
nodal degreesof freedomat verticesin two dimensionsand verticesand edgesin three dimensions,
the analysisof [6] is directly applicableto the nonconformingcase.However,in keepingwith the
philosophyof this paper, we will allow vertex and edgedegreesof freedomand will deducethe
generalnonconforming theory from the conforming theory. The following definitions and lemma
from [5] will provide the essentialconforming theory that weneedfor the nonconformingcase.

Definition 1 Any vertex, edge, and, in the 3D case, face, of the interfaces between subdomains

{f_i} will be called a glob. A 9lob is understood to be relatively open; for example, an edge does not

contain its endpoints. We will also ident+_y a 91ob with the set of the degrees of freedom associated

with it. The set of all globs will be denoted by G.

Definition 2 For a glob G, define the selection operator Ea : Uh(F) _ Uh(F) as follows: for

¢ E Uh(P), Ea(_ is the unique function in Uh(F) that has the same values as ¢ on the degrees of

freedom in G, and all other degrees of freedom of Eacfi are zero.

Note that the union of all globs disjointly cover the set of all degrees of freedom of Uh(F), and

the mappings Ea are projections that induce a decomposition of unity on Uh(F), _ EG = I.
GE0

Lemma 13 There exists a constant C such that .for all pi C ./V'(O_i) that are orthogonal to the

range of Zi and for all globs G E Of_i fq Oflj

l _ ft, 2Ec p+l,/z,a., < C(1 +

Proof. The proposition follows from Lemmas 3.7, 4.6 and 5.1 of [5]. [3

We now prove a bound on the condition number for tile preconditioned system in balancing

domain decomposition for nonconforming elements.

Theorem 14 The interface operator S preconditioned by the balancing preconditioner Mbal defined

in Algorithm 1 with weighting maps defined in (33) has a condition number n(Mb_S ) satisfying the
bound

n(Mb_S ) _< C(1 + log(H/h)) 2 (35)

in both two and three dimensions with the constant C independent of h, H, and ai.

Proof. By tracing back the dependence on the coefficients, it is easy to prove the following
refinement of Theorem 8:

si(p,p) _- _9,, ,2 A/'(0f_i), (36)ai .r Plt/2,a+++ Vp E

with equivalence constants that no longer depending on c. and c* in (2), but only on _. and _ in

(25).

For p, E A/'(0fl_), we may decompose NfN4,, as the nodal interpolant of globs:
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Let [Pi]_, = .si(pi,pi). Considering those pi that are orthogonal to the range of Zi, working one glob

at a time, and using (36), (19), Lemma 13 and (36) in that order, we have

iZ_(Ec_a,pi)l_ < c, jC[_OnjEG_n,p 2 - n, 2[1/2,012j _-- c_jC[EG _ZO Pi]l/2,o_, (37)

< o_jC(1 +log(H/h)) 2- n' 2I_ Pill/2.oa,

< °_JC(l+log(n/h))21P, 12s,.

By the construction of the decomposition, there is an a priori maximum number of globs that

intersect 012i N 0f_j. Summing over such globs, we conclude that

sj(Nf Nipi, NTN@i) < C_Jc(1 + log(H/h))2si(pi,pi).
Oti

The proof is completed by appealing to the bound in Lemma 12. El
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